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The boundary layer on a flat plate in a stream 
with uniform shear 

By J. D. MURRAY* 
Mathematics Department, University College London 

(Received 13 March 1961) 

The incompressible laminar boundary layer on a semi-infinite flat plate is con- 
sidered, when the main stream has uniform shear. A solution is obtained for 
the first two terms of an asymptotic solution for small viscosity. It is shown that 
one of the principal effects of free-stream vorticity is to introduce a modified 
pressure field outside the boundary -layer region. 

1. Introduction 
The region behind a bow shock wave is associated with an inviscid rotational 

flow. This vorticity in the inviscid flow will in some way affect the boundary layer 
on the body. To provide some understanding of the effects on the viscous 
boundary layer of a free-stream vorticity, the laminar boundary layer in a two- 
dimensional incompressible fluid of constant properties on a semi-infinite flat 
plate is studied, when the main stream has uniform shear. 

Li (1955, 1956) and Yen (1955) have considered this problem. Li (1955) ob- 
tainedasolution on the assumption that there is no pressure gradient as y/uf+co, 
where y is the Cartesian co-ordinate measured from the plate, taken as the 
x-axis, and v is the kinematic viscosity. Yen used the same boundary condition 
but employed a Polhausen technique on the velocity profile in the boundary 
layer at  different stations on the plate, and showed that a form factor is required, 
which depends on the boundary-layer thickness. Li (1956) retracted his first 
solution and included in his boundary conditions a pressure gradient at  the edge 
of the boundary layer. Glauert (1957) used the same equations and, in effect, 
the same boundary conditions as Li (1955). He stated that the pressure gradient 
at the edge of the boundary layer must be zero. This pressure-gradient condition 
is considered below. 

In  this note a solution is obtained for the first two terms in an asymptotic 
solution for small viscosity. The effect of the shear on the boundary layer is 
O(vt ) ,  which may be deduced from the introduction of a vorticity number- 
the ratio of the main-stream vorticity to the average vorticity in the boundary 
layer-or from perturbation considerations on the Navier-Stokes equation. 
Accordingly, the correction to the Blasius solution for a uniform main stream 
must be included to O ( d ) .  From consideration of the various boundary conditions 
and a study of the pressure gradient over the complete field of flow, a solution is 
obtained which is correct to O ( d )  everywhere in the field of flow. The solution 
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being the first two terms of an asymptotic expansion, terms of O(v) must be 
considered if they arise. The term of O(v) which does appear is shown to be con- 
sistent with the modified definition of the displacement thickness which is neces- 
sary when the main-stream shear is present. 

The difference in the following solution consists mathematically in the different 
treatment of the boundary conditions as y/v* -+ 00 and in the method of solution. 

2. Basic equations and solution 
Let (x,, y,) be the rectangular Cartesian co-ordinates, with the origin at  the 

leading edge, the x,-axis along the plate and yz perpendicular to it. The velocity 
in themainstream is taken as U, = U, + Cloy,. Take any length 1 as reference length. 
(Alternatively v/U, or U,/Cl, may be used.) Use non-dimensional co-ordinates 
and velocities denoted by subscripts 1 by taking all lengths as multiples of 1, and 
velocities as multiples of U,. From the continuity equation there is a non-dimen- 
sional stream-function ?,hl, such that u1 = a?,h,/ay,, v, = -a?,hl/axl. The dimen- 
sional stream-function is U, 19,. The non-dimensional free-stream velocity is 

U, = 1 + Ny,, N = Cl,l/U,. ( l a , b )  

The usual boundary-layer transformation is to stretch the y1 co-ordinate by 
y = Rgy,, and to use 

as dependent variable, where R is the Reynolds number U,Z/v. However, for a 
uniform main stream, the flow along the plate is obtained correctly to O(R-4) 
for both the boundary-layer flow and the external stream if parabolic co-ordinates 
(t,, 7,) are used. (For a discussion of optimal co-ordinates in general, see Kaplun 
(1954).) We therefore use parabolic co-ordinates here defined by 

(5,+ir1)2 = X l + i Y l  (111 2 0) 

in the whole (x,, yl)-plane, with 7, = 0 on the plate, 5, > 0 on the upper half plane 
and t1 < 0 on the lower half plane. We then stretch the yl co-ordinate by writing 
y = Ray,, and transform the stream-function by (2) as before. We also drop the 
subscript 1 from 5,. All the derivatives of x with respect to 6 and y are bounded as 
R -+ 00, and correctly to O(R-4) the equation for x (boundary-layer equation) is 

For a uniform main stream, we have N = 0, and the solution in parabolic 
co-ordinates is then known to be 

where fo is the Blasius solution. 

for x will commence with the terms 

x = 5.fo(7), (4) 

For a given non-zero N it appears that the simplest asymptotic expansion 
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the rotational contribution being necessarily even in 8. Substituting into ( 3 )  
and equating coeficients of c2 and t3, we get 

and 

where the prime denotes differentation with respect to 7. On the plate u = v = 0, 
and so fo (0 )  =fi(O) = 0, f,(O) =f;(O) = 0. Also, as 7 + co,fA -+ 2. The boundary 
condition on f, as 7 -+ KI will be discussed later. 

Integration of ( 6 a )  with the given boundary condition a t  infinity yields the 
Blasius equation. Equation (6b)  is 

ti4’ +fo fi”’ +f;f; + 2ftf1 = 0, 

which on integration gives 

ti”’ +fof;l -fX + %fl = A,, 

(7) 

where A ,  is a constant. Note that f, above is the particular case n = - 1 in the 
general consideration of uniform flow along a flat plate made by Goldstein 
(1960). 

As regards the condition on fi as 7 -+ co, what we require is that the vorticity w 
should asymptotically differ from the vorticity Qo of the given main stream by an 
exponentially small amount, and that (with this exponentially small change of 
vorticity neglected) the difference in the irrotational flow obtained from the 
asymptotic form of the boundary-layer flow and that from the given main stream 
should itself tend to zero as the unstretched co-ordinate 7, -+ co. (Note that 
7, -+ co a t  every point whose distance from the nearest point of the plate + m.) 

By this means we satisfy (i) the physical condition that the diffusion of vor- 
ticity produced at  the solid surface should contribute only a n  exponentially 
small vorticity outside the boundary layer, (ii) the condition that the boundary- 
layer flow should merge smoothly into the main-stream flow which itself satisfies 
(i)7 and (iii) the condition that the perturbation of the main stream, due to such 
effects as the displacement thickness, should vanish a t  an infinite distance. 
As shown below, these conditions are sufficient (as in the uniform flow oase) 
for a solution to be defined. It is, of course, necessary that (iv) any induced pres- 
sure gradient in the region outside must be bounded; but when (iii) is satisfied, 
so is (iv). 

For small 7, we have 

and, for large 7, 

where y, a ( = 1.3282) and /3 ( = 1-7208) are constants. 
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The two solutions of ( 7 )  with double zeros at the origin are given by 

8 !  

9!  

"72 a275 

a73 a276 a379 

y,(7) = ----+23-+.. . ,  
2 !  5 !  

y3(7) = - - 2-  + 9- + . . ., 3! 6!  

for small enough 7, of which y2 is a complementary function of (8) and y, a 
particular integral of (8) with A ,  = a. When 7 (or A)  is large, asymptotic approxi- 
mations to complementary functions of (8) are (i) constant, (ii) E-,(v), (iii) H-,(T), 
where E-, and H-, are related to the cylindrical parabolic functions (Whittaker 
&Watson 1927) and 

(12) 1 E-1(7) = A2( 1 + &A-2) = -P7 + $( 1 + +P2) 
and ~ - , ( 7 )  e-*z~-3(1 - 3 ~ - 2 +  ...). 

A fourth complementary function of ( 7 ) ,  which is a particular integral of (8) 
with A ,  = a, is asymptotically equal to -4q. Consequently, there must be 
constants a2, b,, c2, a,, b,, c, such that 

(13) I y2 N a,+b2E-,+c2H-, 

and y, N - Say + a3 + b3E-1+ ~3H-1.  

These equations were solved on a Univac machine and the constants evaluated, 
the result being 

a2 = 1.0315, b, = 0.8354, a, = 0.96530, b, = 1.13165. 

A solution of (8) for fl(7) may be taken in the form Ay, + By,, where A and B 
are constants to be determined. Thus, 

fl(7) = AY2+BY, - (Act, + Ra,) -+Bar + (Ab, + Bb,) E-, + (Ac, +Be,) O(e-*a) 

= [(Aa2 + Ba,) + W b 2  + Bb,) (1 + 4P"I 
-[(Ab,+BBb3)P+~Ba]7+(Ab,+Bb3)112 
+ (Ac,  + Bc,) O(e-*'), 

From (1)  we have, in the main stream, 
and fo(7) - 27 -P. 

and so A and B must be chosen to make the coefficient of 72 have the value 8, 
that is, 

From ( 5 )  we have, for large 7, 
Ab2+Bb3 = 4. (15) 

x (WP)+, , f  4N 2 1  (27 2 +CY+D), 

neglecting exponentially small terms, where 

c= --( aB+P), D = (Aa2+Ba,)+Q(2+P2). 
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Hence 

This is now the boundary condition for small rl of the inviscid flow problem 
(that is the solution of V2k1 = N ) ,  which must merge smoothly into the main- 
stream flow with the diffusion of vorticity produced at  the plate exponentially 
small. With these boundary conditions the solution is 

This stream-function satisfies conditions (i), (ii) for any C and D. A and B are 
undetermined and may still be chosen to make C or D equal to zero. 

7 
0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 

f l ( 7 )  
0 
0,0602 1 
0.23139 
0.49837 
0.84423 
1.25044 
1.69800 
2,16951 
2.65164 
3.13689 
3.62408 
4.11712 

f 2 7 )  7 
0 2.4 
0.59050 2.6 
1.10870 2.8 
1.54698 3.0 
1.89611 3.2 
2.14999 3.4 
2.31087 3.6 
2.39299 3.8 
2.42199 4.0 
2.42963 4.2 
2-44577 4.4 
2.49144 4.5 

TABLE 1 

f I ( 7 )  
4.62326 
5.15005 
5.70444 
6.29155 
6.91480 
7.57617 
8.27670 
9.01689 
9.79695 

10.6 1697 
11.47697 
11.92197 

fh) 
2.57583 
2.69786 
2.85023 
3.02377 
3.21037 
3.40417 
3.60154 
3.80052 
4.00015 
4.20004 
4.40000 
4.50000 

Since 

ul, with $l given by (16), tends to infinity with rl unless C = 0. With this value 
of C and equation (15)' we get 

B = -,8/a, A = ( 1  + 2(,8/a)b3)/2bz, (17a)  

C = 0,  D = a2( 1 + 2(P/a)  b3)/2bz - (P/c() a3 + h(2 +p2).  (17b) and 

With these relations, A = 2.3534, B = - 1.2955 and fl(q) and f ; (q )  are as shown 
in table 1, and figure 1 below. With C and D from (17a,  b ) ,  condition (iii) is satis- 
fied. Denoting the pressure gradient in the extended boundary-layer flow by 
(Pl, Pz, 0), we have 

and 
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with ul, u1 from above. If C were not equal to zero, for large t1 and yl respectively, 

4N2D we would have 
Pl 7, pz 0, 

4 0, Pz N - 3(N2C/RB) 71, I 
and, for not small and small 7' (i.e. a t  the edge of the boundary layer), 

N 1 ~ N Z ~ D - C Z )  
2R4 E l  R 

P,+--(SC+p)-+- 

Pz -+ O(R-4). I 

7 
FIGURE 1 

It may have been thought, from a consideration of the problem only as far 
from the plate as the edge of the boundary layer, that the pressure gradient 
(19) should be zero to O(R-$), in which case C would be equal to - @ (Glauert 
1957). However, from (18 ) ,  this would result in an unbounded pressure gradient 
in the free stream as yl -+ 00, which seems improbable from physical considera- 
tions. Therefore with C = -&3, although from (19) the pressure gradient is 
zero to O(R-*), there is a pressure gradient growth as ql increases as in (18). 

Thus, unless C = 0, condition (iii) (and (iv)) is violated. With C and D from 
( 1 7 b ) ,  equation (16) becomes 

The solution given by ( 5 ) ,  and that for the inviscid region outside the boundary 
layer (that is, where the vorticity created at  the plate is exponentially small) 
given by (20), then satisfies conditions (i) to (iii), and also (iv), to O(R-*). From 
(19), with C and B from ( 1 7 b ) ,  there is therefore an induced pressure gradient of 
O(R-4) and equal to - Np/ZR*[, at the edge of the boundary layer. 
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The complete solution to the flow problem is given by ( 5 )  with A and B from 
( 1 7 a ) .  The inviscid flow is given by ( 2 0 )  which gives the known Blasius solution 
for N = 0. Since we are seeking a solution, correct to O(R-g), the term in (20) 
of O(R-l) could perhaps be omitted. However, this term must be considered in 
relation to any continuation to O(R-l) of the series solution. This term repre- 
sents an outflow as 7, -+ 00, which is consistent with the revised definition of the 
displacement thickness 6, when there is a main-stream shear present. (This has 
also been discussed by Curle (1957) . )  For ease of physical interpretation, we con- 
sider the definition in Cartesian co-ordinates in the form 

where y1  is the distance (outside the boundary layer) from the plate of the posi- 
tion at which the displacement thickness S, is measured. This is the classical 
definition when N = 0.  From (21 ) ,  with u1 obtained from (5) and ( Z O ) ,  we get 

from which Sl-+ 0 as y1  -+ co, as it must since any finite displacement of the stream 
lines at infinity would correspond to an infinite increase in mass flow. In  the case 
of uniform main-stream flow ( N  = 0), the inviscid-flow solution gives the dis- 
placement-thickness profile as the solid body for which it is the potential flow 
solution. From (21 ) ,  if y ,  = 0 in the limits of the integrals in (22 ) ,  we get at the 
edge of the boundary layer, 

defined in terms of the defect of mass flux in the boundary layer, which is con- 
sistent with our definition. With S, obtained from ( 2 3 )  as the profile of an equiva- 
lent body, equation ( 2 0 )  gives the inviscid flow past it, as in the case of a uniform 
main-stream flow. Care must be exercised in interpreting the result given by 
( 2 3 ) ,  since the correct defect of mass flux to O(R-1) is not known completely until 
further terms are obtained in the asymptotic solution (5). It does, however, 
illustrate the consistency of the above solution and the definition of the dis- 
placement thickness. It is at this stage that a mathematical limitation on N is 

N < R i l 4 D x t .  
imposed, namely, 

The shearing stress is given by r2 = ,u au2/ay2, and the contribution due to the 
free-stream vorticity is easily calculated from (5). In  particular, according to 
( 5 ) ,  the skin friction on the plate is given in non-dimensional form by 

where p is the density, and el = xi on the plate. The second term in (24 )  gives the 
increase in the skin friction due to the main-stream vorticity. It is interesting to 
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note that this contribution does not depend on the position t1 on the plate. From 
(17a, b )  and table 1, we get 

1 N 
7 0  = __ 0.33206 + - 3.1259 + . . . Rb$ R 

Since f;, = xk on the plate, outside the boundarylayer, T = N / R ,  and so, from (23), 
the presence of the boundary layer increases the effect on the plate of the vor- 
ticity in the main stream. The variation with 7 off,(?), fi(7) is shown in figure 1. 

In  conclusion, it may be said that one of the principal effects of free-stream 
vorticity is to introduce a modified pressure field outside the boundary-layer 
region. As a result, the skin friction, boundary-layer separation, and stability 
will all be affected. These effects are important when the displacement effects 
become significant. It should be noted that the displacement effect due to the 
free-stream vorticity is of O(R-l). 
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Nonr-1866 (34) at Harvard University. 
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